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1. Introduction

My viewpoint comes from a bottom-up approach to modeling quasicrystal structure
and explaining their thermodynamic stabilization. That is, we start with ab-initio
or pair potential based evaluation of the total energy, to capture the T=0 behavior;
or perhaps MD (Molecular Dynamics) and MC (Monte Carlo) simulation for T > 0.
We inductively identify motifs and restrict our model, so it has freedom to explore
only the states we know are comparatively good. [At this level, the model may be
formulated in terms of tilings or clusters, but the discrete geometry is just standing
in as a way to label the distinct low-energy atomic configurations.] New simulations
are constructed, which can handle larger length scales because there are fewer degrees
of freedom. At the moment, this appears to be the most direct approach to acertain
whether energetic stabilization (e.g. an implementation of Penrose’s matching rules)
is ever relevant to real quasicrystals.

1.1. Importance of using realistic potentials

In a metal, realistic pair potentials have Friedel oscillations [Fig. 1(a)]. I will review
why this is the real-space analog of the ‘Hume-Rothery’ (and related) mechanisms
in reciprocal space. The energy from second-order perturbation theory, computed in
reciprocal space, is
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where E() is the free electron dispersion, and φ(r) is the [short ranged] potential for an
atom to scatter an electron. [I do not encumber this illustration with multiple species.]
So δE is most negative when φ̃(G, the atom density at the reciprocal lattice vector
G, is strong for G nearly spanning the Fermi surface: Hume-Rothery’s criterion. If
we now insert ρ̃(q) =

∑
i eiq·ri , where {ri} are the atoms’ positions, we obtain
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Veff (ri − rj), (2)

where the effective interatomic potential Veff() is the convolution of the electron
susceptibility χ(r) with φ(r) twice. Since χ(q) has singularities in reciprocal space
at 2kF , these appear as a factor ∝ cos(2kF r + δ) in χ(r) – Freidel oscillations – which
is inherited by Veff(r). Thus, Hume-Rothery stabilization is equivalent to saying the
second or third minima in Veff(r) are important in determining the structure.
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Figure 1. Long-range potentials and cluster stabilized from the outside. (b). A
pentagonal cluster is outlined (dashed line) in a schematic model. Its topmost
atom, is chosen for this example, lies at the bottom of potential wells (shown by
circles) from five atoms inside the cluster, and three more atoms outside it.

At least, Friedel oscillations are important in the Al-TM family [i(AlPdMn),
d(AlNiCo)] and in the Frank-Kasper family [i(ZnMgRE)]. In this conference,
Mihalkovič and Widom [14] assert that the embedded-atom potentials [which lack
Friedel oscillations, but implicitly include multi-atom interactions ] work excellently
for the i(CdCa) family.

As a result, the sites within a “cluster” are not governed by interactions with
the other atoms in the cluster, but are a resultant of overlapping spheres representing
the potential wells of second and third neighbor atoms, including those outside the
cluster. This seemed to me the only explanation for the pseudo Mackay cluster in e.g.
i-AlCuFe. [The outer shells have icosahedral symmetry, but the innermost one has
a roughly 1/3 filling of 20 sites on 3-fold axes, where one geometrically would have
expected an icosahedron].

1.2. Temperature does matter

The Al atoms have rather weak interactions, and sometimes seem to behave almost like
a fluid moving around a framework of fixed and well-ordered TM atoms. Simulations
by Widom, Cockayne [15], Mihalkovič [7], Gähler [16], and collaborators found
frequent hoppings of the Al atoms, so that one wonders whether to speak of well-
defined sites. The configurational entropy from this is obviously huge.

Simulational approaches have scarcely scratched the surface as far as addressing
thermally excited disorder, but I would say we know what to do. The reason it has
not been tried is that a thorough ab-initio-based study of a good quasicrystal has been
carried out just a handful of times so far, and it is much simpler to do it at T = 0.

2. Clusters

The simulation experiences have led me to believe that in the known quasicrystals,
clusters do not have physical reality (in the sense of having significantly stronger
intra-cluster bonding). Yet clusters (or tiles, which I consider to be a closely related
concept) are inescapable as a framework to organize our understanding of a structure.

A lesson we learned from more fundamental fields of 20th-century physics is that
we all need frameworks to organize our thinking, but we forget it’s a coordinate system
we impose to decribe phenomena, not a physical reality. We should not be seduced
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by our tools and ascribe fundamental significance to these mental constructs. Let us
instead be open to “complementarity”: that is, dissimilar descriptions may secretly
be equivalent.

2.1. Clusters for analyzing structures as predicted from energy calculations

Our experiences with decagonal structure models [6, 13] offer abundant examples in
which the same structure may be expressed in terms of cluster C on network N , or of
cluster C ′ on network N ′. Perhaps cluster C ′ is related to C by some sort of inflation;
or perhaps C ′ is associated with the voids in the packing of C and vice versa. (An
example is the complemetarity of Bergman clusters and Mackay clusters in icosahedral
quasicrystals.)

In a great many models, the cluster is a mathematical corollary of a set of
inequalities which express the energy minimization. This appears most baldly,
perhaps, in abstract tiling models where one demands to maximize the frequency
of occurrence of cluster M [1, 2, 4] – one presumably would say cluster M does have a
physical content in this model. But in many case, this optimization forces the presence
of a much larger supertiling, and much larger clusters C appear at its vertices. Thus,
the appearance of the cluster is dependent on things that happen far away: a slight
change in e.g. stoichiometry, and the clusters which dominated the whole image may
dissolve in favor of some other motif, as a consequence of delicately competing energies.

A second way in which the cluster configuration depends on faraway atoms can
be seen in Al-TM quasicrystals, which are well described using pair potentials that
have a strong second potential well due to Friedel oscillations. The fact that an atom
occurs in a particular site within a cluster is then not mainly due to interactions with
its neighbors in the cluster, but is the resultant of potentials from many more distant
neighbors in the space surrounding the cluster, and which are sufficiently correlated
that the potentials from them add constructively (see Fig. 1(b)).

In conclusion, my proposed operational definition of clusters is statistical: “a
pattern of atoms which is found in all examples of a given ensemble.” An ensemble is
implicit in anybody’s definition of a cluster: to locate the boundary around a group of
atoms, it must be possible to surround the cluster in more than one way; one could not
talk of e.g. the fcc lattice as being built from clusters. The implicit ensemble might be
either multiple occurrences of the cluster in a large unit cell, or various crystal phases
that contain the same cluster, or a single simulation cell in which one enumerates all
the low-energy structures.

2.2. Clusters in cleavage and interfaces

One cannot rule out a cluster description a priori as a way to map the energy landscape
of a structure. When I was more naive, in fact, I advanced a cluster model which
assumed a certain cost of cutting the linkages between Mackay clusters along 2-fold
and 3-fold symmetry directions, so as to predict the equilibrium crystal shape [5].
Although a certain knobbliness might be anticipated, still even if the crevices got
filled by Al atoms the energy cost might still be a linear function of the cluster-cluster
linkages cut by the placement of the interface.

But in view of the experience mentioned in Sec. 2.1, I no longer expect that
cluster linkages govern the energy differences due to offsets or orientations of the
interface. Nevertheless, one can imagine “clusters” emerging in the purely statistical
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sense expressed in the “operational definition” at the end of Sec. 2.1. If a crack
approaches similar groupings of atoms, presumably it tends to pass through them
in similar fashions. Then the atoms which always find themselves together on the
same side of the crack could be designated a “cluster” for the purposes of describing
crack propagation. Notice that (i) such “clusters” need not be the same ones that are
useful in describing the equilibrium ensemble (ii) one would expect their shape to have
less symmetry than the material itself, as it must depend on the orientations of the
crack propagation and of the crack shear. If it happens that in fact the same clusters
appear in cracks of various orientations, and for other physically defined ensembles,
that would be justification to attribute a ‘physical reality’ to the cluster – but such
tests seem possible mainly in simulations, not in experiments.

3. Phason elasticity

My motivation here is not in the physical consequences of phason elasticity, but in
using elasticity as an indicator of the nature of the quasicrystal state. Gradient-

squared elastic free energies appear only in the random-tiling kind of phase, in the
sense distinguished in Sec. 4, above. Matching-rule interactions would lead to an
energy cost which is linear in the absolute value of phason strain components [8],
presumably the same is true for any other interaction that has the same ground state
(or to one in the same “local isomorphism” class).

[A small caveat should be offered. The linear cost is related to the discrete
hops that are mathematically unavoidable in structures with the usual quasicrystal
space groups [9]. On the other hand, for unusual non-symmorphic space groups,
a “continuous phason mode” is possible [10] which may exhibit gradient-squared
elasticity in the ground state, in the same sense that one-dimensional incommensurate
crystals may. But no plausible atomic model structure of this class has ever been
exhibited, much less a set of interactions for which it is the ground state.]

The experiments of de Boissieu et al on icosahedral phases are the only ones I
know that support the validity of elastic theory and, implicitly, of a random-tiling-
like equilibrium state. But I will not fully trust the elastic interpretation of the
diffuse scattering until the quantitative elastic constants agree (at least in order of
magnitude) with a plausible simulation. That has not happened yet: one reason is
that the “canonical cell” tiling, which is the simplest way to make a well-specific
ensemble for most cluster-based icosahedral models, is also the least tractable tiling
to simulate; a second reason is that it is nontrivial to extract an absolute scale of
fluctuations from measurements of diffuse scattering.

In the case of decagonals, no evidence of gradient-squared elasticity has ever been
seen in experiments. The behavior of the entropic elastic theory in decagonal random
tiling models is not well understood, either. Thus, it seems more plausible to me
that matching rules (or the equivalent) are realized in decagonal quasicrystals, than
in icosahedral ones.

4. Thermodynamic stabilization of quasicrystal phases

The two fundamental competing scenarios of the stabilization of quasicrystals are not
exactly ‘entropy’ versus ‘energy’, as we often loosely say. Rather, the question is
whether the model is in the qualitative class that contains quasiperiodic ideal tilings
that have purely Bragg peaks, or the class that contains the maximally random tiling
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in which long range order is an emergent phenomenon. This distinction is a rigorous
one from the viewpoint of statistical mechanics, because these two states are separated
by a phase transition, but that is of no help in distinguishing them experimentally.

4.1. Role of simulations

I have come to believe that ab-initio modeling, though tedious on account of the many
levels of description between microscopic and macroscopic, [6, 7] is the quickest path to
a solid understanding of which scenario should apply to a particular given material. It
is sometimes objected that simulation is unfeasible for handling e.g. incommensurate
modulations, when the effective repeat cell is far too large to simulate by brute force.
But there are generally ways to bridge to large scales by connecting the simulations
first to a kind of continuum model. [A valid analogy is that one can understand
the geometry of a large soap bubble by evaluating its surface tension, which can be
computed using a far smaller simulation cell.]

To get meaningful results, it is crucial (and very difficult) that the structure used
in the modeling be made consistent with the Hamiltonian assumed – it must be the
ground state (in the T = 0 case), or nearly so.

Rather generally, Al-TM quasicrystals seem to have a framework of well-fixed
sites plus a scattering of sensitive sites. In i-AlMnSi (and perhaps some others),
these are the δ atoms of Ref. [12], located on 6D body centers in the hyperspace
formulation, or centering Bergman clusters in real space, which can alternate between
Al or TM atoms or vacancies. In d-AlCoNi (Ni-rich or Co-rich), there are Al atoms in
‘channels’ [13] which undergo (in simulated models) intricate occupational/displacive
orderings. At a higher level of description, such orderings can be expressed as terms
– maybe the dominant terms – in the effective tile-tile interaction (whether or not it
realizes matching rules).

4.2. Stoichiometry in random-tiling models?

It was asserted that ‘a considerable amount of chemical disorder is essential to a
random-packing model. [3]’. Perhaps this is based on a mistaken picture that random
packings (of clusters) necessarily create atom conflicts that must be resolved in a
context-dependent way. But actually each tile in a tiling – whether random or governed
by local rules – has a finite set of local environments, and the atom decoration is
designed to fit well with every environment, without overlapping or conflicting atoms.

In the simplest cases – e.g. the square-triangle tiling with dodecagonal symmetry,
or the rhombohedral tiling with ico symmetry – there are two kinds of tiles, and
the (irrational) ratio of their numbers is fixed by the symmetry. The decoration is
deterministic, so there is a unique stoichiometry. However, tilings related to real
quasicrystals often have more than two tiles – e.g. the ‘canonical cell tiling’ with
ico symmetry, or the ‘hexagon-boat-star” with decagonal symmetry. Then within the
sum rules fixed by symmetry, one kind of tile can be traded for a combination of
the others; sometimes the decoration is such that this trade leaves the atom count
unchanged [6], so our model is line compound in this case too. In the case that the
atom content changed, though, the alloy composition would indeed be variable; but as
Elser once suggested, such a decoration is undesirable since phason dynamics would
be coupled to, and slowed by, mass diffusion, contrary to the observed relaxation in
good quasicrystals.
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4.3. Origin of matching rules?

Note that although it become attractive to reformulate matching rules in terms of a
decoration that implements Gummelt-like covering rules, [3], I do not think this is
likely to emerge from an atomistic model. If a covering cluster emerges, it will be a
sort of accident from the maximimation of some smaller non-overlapping cluster [see
my comments on clusters in Sec. 2.1).]

Instead, I consider it much more likely that something similar in spirit to
Penrose arrow rules emerges. That is, the larger energy scales experssed by
the fundamental atomic sites define a random-tiling ensemble. Then additional
occupational orderings in relatively rare sites define something like set of interacting
arrows. In fact, Widom [11] (with Cockayne and Al-Lehyani) has found (in the past
few years) a matching rule almost equivalent to Penrose’s, in the decagonal d(AlCuCo),
implemented in that case by an alternation AlCo/CoAl in the chemical occupancy of
a pair.

4.4. Stabilization by which entropy?

The evidence is abundant that many quasicrystals are high-temperature phases, ergo
stabilized by entropy – but, in many cases, not the tiling configurational entropy!
for it is too small. So, the larger entropy of vibrations or of chemical disorder is
the only candidate to affect the phase diagram. In the past, we brushed aside such
entropy contributions, by claiming they must have a similar value in the quasicrystal
phase as they do in the approximant phases. The latter phases were assumed to
be the immediate competitors of the quasicrystal phase in the phase diagram, so
the difference in vibrational or substitutional free energies would largely cancel. But
perhaps we need to examine more carefully just how the quasicrystal ordering may
affect these entropic terms.
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[12] M. Mihalkovič, W.-J. Zhu, C. L. Henley, and R. Phillips, Phys. Rev. B 53, 9021 (1996).
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